01、碳纤维碳
纤维是一种含碳量在90%以上的纤维材料,具有质量轻、强度高、耐腐蚀、模量高、密度低、无蠕变、导电导热性能良好、非氧化环境下耐超高温、抗疲劳性好等特性,是发展航空航天、新能源、高端装备制造等高科技产业的重要基础材料,是制造火箭、导弹、战斗机、海军舰艇及多种尖端军事武器的必备关键材料,在国防军工领域有着不可替代的战略地位。
02、对位芳纶对位芳纶全称“聚对苯二甲酰对苯胺”(PPTA) 纤维,是由对苯二甲酰氯和对苯二胺合成的有机高分子纤维, 由于酰胺键连接在两个苯环的1号和4号位置,又称之为芳纶1414。
对位芳纶具有高比强度、高比模量、耐高温和阻燃等优异性能,与碳纤维、高强高模聚Z烯并称为世界三大高性能纤维。
对位芳纶的主要突出优点是高强度、高模量。其拉伸强度是钢丝的6倍,拉伸模量是钢丝及玻纤的2~3倍,密度仅为钢丝的五分之一,主要应用于安全防护、防弹,橡胶制品增强,高强度缆绳以及石棉摩擦材料替代。
03、间位芳纶
间位芳纶全称“聚间苯二甲酰间苯二胺”(MPIA)纤维,是由间苯二甲酰氯和间苯二胺合成的有机高分子纤维。由于酰胺键连接在两个苯环1号和3号位置,又称之为芳纶1313。
间位芳纶是一种开发早、应用广、产量大、发展快的耐高温纤维品种,其总量居特种纤维的第二位。
间位芳纶具有优异的耐高温性,良好的尺寸稳定性,优良的可纺性、防火性和耐腐蚀,被广泛应用于安全防护、环境保护和现代工业等领域。
04、芳纶Ⅲ
芳纶Ⅲ(简称F3 纤维)纤维是主链由芳纶和杂环组成的一类高分子聚合物纤维,全称杂环芳香族聚酰胺纤维,又称“杂环芳纶”,被工程界誉为“超级纤维”。
芳纶Ⅲ是对位芳杂环共聚酰胺纤维系列产品,具有超高强/高模、高韧性、耐高低温、优异电绝缘性、耐辐照、抗腐蚀、耐疲劳、高阻燃性等特点,广泛应用于飞机部件、星载/机载/舰载雷达罩、卫星部件、防弹材料、仪器防舱、电力电信、输送材料、体育用品等领域。
05、UHMWPE纤维
UHMWPE纤维全称是超高分子量聚乙烯纤维,别名又叫做高强高模聚乙烯纤维,是分子量150万以上的无支链的线性聚乙烯。它和碳纤维、芳纶合称为“世界三大高科技纤维”。
UHMWPE纤维是世界上最坚强有韧性的纤维。用俗话说就是:“轻薄如纸,坚硬如钢”,强度是钢铁的15倍,比碳纤维和芳1414还要高2倍,是目前制造防弹衣的主要材料。
UHMWPE纤维除了具有优良的力学性能、耐冲击性、耐磨性、耐化学腐蚀性、耐光性外还具有良好的疏水性、耐水耐湿,电绝缘性和较长的曲折寿命。其耐水和耐低温性能突出,比重较小,是唯一能漂浮在水上的高科技纤维,还是一种比较理想的低温材料。
06、聚酰亚胺纤维
聚酰亚胺纤维又称芳酰亚胺纤维,是指分子链中含有芳酰亚胺的纤维。
聚酰亚胺纤维拥有良好的可纺性,可以制成各类特殊场合使用的纺织品。由于具有耐高低温特性、阻燃性,不熔滴,离火自熄以及极佳的隔温性,聚酰亚胺纤维常被用做制作各种特殊防护服。
07、聚苯硫醚(PPS)纤维
PPS是一种分子主链由苯环与硫原子对位相互交替排列、结构规整性好的高分子材料,具有良好的力学强度、耐热性和耐化学腐蚀性、水解性,以及阻燃性等综合性能。
PPS纤维是目前少数可熔纺加工的商品化高性能纤维,是火力发电厂、垃圾焚烧厂等高温、腐蚀尾气袋式除尘核心部件的基础材料,具有过滤精度高(PM10.0、PM2.5)、服役时间长(4 年)的特点。
PPS纤维除了在过滤领域有突出作用外,其单丝或复丝织物还可用作除雾材料、造纸机干燥用布、缝纫线、各种防护布、电绝缘材料、耐热衣料等材料;此外,PPS纤维可制成长纤增强复合材料,用于军工、航空航天等领域。用一种主要成分为氟气、氧气和氮气的混合物来处理PPS纤维织物,特别适合用于电化学储能装置的隔离材料。
08、聚芳酯纤维
聚芳酯纤维是经熔融聚合纺丝法获得的特种纤维,在整个制备过程中没有溶剂挥发和有害气体排放,纤维属于绿色环保节能低碳材料。
在聚芳酯熔融纺丝过程中,其高分子链高度取向,从而赋予聚芳酯纤维高耐热、高强度、高模量、低吸水、抗蠕变、介电常数低等优异特性,广泛应用于航空航天、抗低温抗辐射、装甲防护、舰艇绳缆等国防、交通领域以及高温过滤材料、电子绝缘材料、体育用品等军民两用等领域,具有重大的军事和工业价值。
PBO纤维是目前强度最高、综合性能最好的高性能有机纤维,是继芳纶纤维、碳纤维之后的新一代高性能纤维。被誉为“21世纪超级纤维”,具有高强度、高模量、高耐热性和高抗燃性等特点,PBO纤维能够广泛应用于航空航天和民用领域。
PBO纤维的强度超过了钢纤维和碳纤维T800,模量是对位芳纶纤维的两倍。PBO纤维的热分解温度为650℃左右,优异的阻燃性,与火焰接触时不燃烧、不硬化。同时具有良好的耐冲击性、耐摩擦性、尺寸稳定性。另外,PBO纤维还拥有特殊的电磁性能和隐身作用,可以被用于天线罩和飞机蒙皮等。
PBO纤维被认为是下一代装甲防护用基础材料及航天结构部件、航空结构/隐身领域的关键原材料,同时在光缆、车辆防护、人体防护、建筑增强和体育用品等民用领域也有着广阔的应用前景,是一种军民两用的高端纤维材料。
10、碳化硅(SiC)纤维
SiC纤维(连续)是一种多晶纤维,主要由气相沉积法(CVD)和先驱丝法制得。
SiC纤维具有高强度、高模量、耐高温、抗氧化、抗蠕变、耐腐蚀、与陶瓷基体相容性好等一系列优异性能,是一种非常理想的增强纤维,在航空、航天、兵器、船舶和核工业等一些高技术领域具有广泛的应用前景,是发展高技术武器装备以及航空航天事业的战略原材料。
由SiC纤维增强的金属基(钛基)复合材料、陶瓷基复合材料已用于制造航天飞机部件、高性能发动机等高温结构材料,是21世纪航空、航天及高技术领域的新材料。
11、玄武岩纤维
玄武岩纤维是以天然玄武岩拉制的连续纤维。是玄武岩石料在1450℃~1500℃熔融后,通过铂铑合金拉丝漏板高速拉制而成的连续纤维。它是由二氧化硅、氧化铝、氧化钙、氧化镁、氧化铁和二氧化钛等氧化物组成,是一种新型无机环保绿色高性能纤维材料。
玄武岩连续纤维不仅强度高,而且还具有电绝缘、耐腐蚀、耐高温等多种优异性能。此外,玄武岩纤维的生产工艺决定了产生的废弃物少,对环境污染小,且产品废弃后可直接在环境中降解,无任何危害,因此是一种名副其实的绿色、环保材料。我国已把玄武岩纤维列为重点发展的四大纤维(碳纤维、芳纶、超高分子量聚乙烯、玄武岩纤维)之一,实现了工业化生产。
玄武岩连续纤维已在纤维增强复合材料、摩擦材料、造船材料、隔热材料、汽车行业、高温过滤织物以及防护领域等多个方面得到了广泛的应用。
作为主要的技术发源地,并得益于强大的工业基础和长期积累,美国、日本和欧洲等国家与地区在高性能纤维及其复合材料领域已形成先发优势。美国的优势集中在黏胶基碳纤维、沥青基碳纤维、氧化铝纤维、芳纶纤维等方面,复合材料应用技术也遥遥领先;日本在聚丙烯腈基碳纤维、沥青基碳纤维和陶瓷纤维等方面具有明显优势;欧洲在纺丝装备方面基础好、水平高。他们在高性能纤维材料方面具有很高的相互依存度,技术与资本交叉融合,形成产业生态圈。俄罗斯及东欧国家继承了苏联自主发展的纤维材料技术,其中有机高性能纤维、黏胶基碳纤维技术平较高,各种热加工设备实用可靠,可基本满足其国防工业需求。以下分别对各高性能纤维的国外发展现状和趋势进行介绍。
1、碳纤维
聚丙烯腈基碳纤维最早是由日本大阪工业试验所的进藤昭南在1959年研制开发成功。在其工作基础之上,日本碳公司在1962年以聚丙烯腈纤维为原料,通过预氧化处理、碳化处理最终制备得到了通用级碳纤维。英国皇家航空研究所(RAE)的W. Watt等人1963年发现在预氧化处理的过程中对聚丙烯腈纤维施加一定的张力,抑制聚丙烯腈原丝在预氧化热处理过程中的收缩,可以明显提高最终碳纤维的力学性能,这一技术的使用为现代聚丙烯腈基碳纤维的生产奠定了工艺基础。在此之后,英国的Courtaulds公司和日本碳公司都分别在1969年建成了高性能聚丙烯腈碳纤维的工业生产装置。日本东丽工业株式会社与东邦人造丝株式会社在1971年之后也相继加入了聚丙烯腈基碳纤维的生产大潮之中。聚丙烯腈基碳纤维自20世纪60年代末研制开发成功以后,经过1970—1980年的稳定发展以及20世纪90年代的快速发展,其生产制备技术已成熟。目前,聚丙烯腈基碳纤维产量占全球90%以上,已经分化为大丝束纤维(以美国为代表)和小丝束纤维(以日本为代表)两大类。大丝束适用于普通的工业、民用和体育休闲领域;而小丝束纤维代表世界聚丙烯腈基碳纤维发展的最先进水平,追求高性能,其中日本东丽生产的聚丙烯腈基碳纤维T1100的拉伸强度已经达到了7.0GPa,是目前为止世界上力学强度最高的聚丙烯腈基碳纤维。世界上最主要的碳纤维生产国是日本,其中东丽、东邦人造丝及三菱人造丝依靠其先进的原丝制备和碳化技术等优势,在质量上处于全球领先地位,已发展了高强、高模及高强高模三大系列。高强度碳纤维已从T-300(力学强度为3.53GPa,模量为230GPa),上升到T-1100(力学强度7.0GPa,模量约324GPa);高强高模并重的“M60J”抗拉伸强度为3.82GPa,最高模量可达588GPa。美国卓尔泰克(Zoltek)公司(已被日本东丽全资收购)和德国SGL集团是大丝束碳纤维的主要生产商,其中美国是大丝束碳纤维的主要生产国。2020年国外主要碳纤维生产企业信息如表1所示。
表1 2020年国外主要碳纤维生产企业信息
注:本表数据来自市场调研
2. 对位芳纶
对位芳纶最早由美国杜邦公司于20世纪60年代开发成功,1972年开始工业化生产,随后荷兰、日本、韩国及俄罗斯等国家也开始了各自的研究工作。作为主要技术发源地,并得益于强大的工业基础和长期积累,美国杜邦和日本帝人在对位芳纶领域拥有绝对的技术优势。杜邦在美国、日本和爱尔兰等多国建立对位芳纶生产基地,2016年时产能为34kt,但自2017年关停美国Cooper River 5kt/a装置后,直至2020年其对位芳纶产能一直维持在29kt/a。帝人的对位芳纶生产基地主要建在日本和荷兰,2020年产能达到32kt,并计划到2022年扩产增加约25%的产能,预计产能达到39kt/a。其中,帝人在日本松山的对位芳纶为三元共聚对位芳纶,是采用聚合-湿法纺丝一步法而成的,商品名为Technora®,产能一直维持在3kt/a。2019年杜邦和帝人对位芳纶产能占全球总产能的83%,2020年由于国内对位芳纶企业的扩产,这两家公司的产能下降至72%。除美国、日本之外,韩国可隆也是较早的对位芳纶生产企业,2020年其产能扩至7.5kt/a ;韩国晓星和泰光也有对位芳纶产品供应,产能分别为1.7kt/a和1.5kt/a。2015—2020年国外各企业对位芳纶产能如表2所示。
表2 2015—2020年国外各企业对位芳纶产能(单位kt)
注:本表数据来自市场调研
在对位芳纶应用方面,安全防护、防弹材料用纤维占30%,车用摩擦材料用纤维占30%,光学纤维保护增强用纤维占15%,轮胎用纤维占10%,橡胶增强用纤维占10%,其他用纤维占5%。发达国家在高性能纤维及复合材料方面相互依存度高,技术和资本交叉融合,产业规模逐年扩大,积极重组联合,对大工业应用提前布局。随着高性能对位芳纶全球市场的急速发展和需求增长,对位芳纶及其复合材料新一轮技术突破正在加速推进,同时,全球行业垄断格局也在不断加剧,优势企业主导地位难以撼动。国外主要对位芳纶生产企业
4.芳纶Ⅲ
芳纶Ⅲ主要由全苏合成纤维科学研究院和全俄聚合物纤维科学研究院进行研发,生产集中在特威尔和卡门斯克两家公司,产品品种主要包括SVM、Armos和Rusar 系列,总产能估计约2000t/a。其中SVM和Armos 是苏联时期实现产业化的,而Rusar是俄罗斯于1990年代采用干喷湿纺工艺开发的新型杂环芳纶,此后其高强高模型Rusar-S(强度5.5~6.4GPa,模量160GPa)和耐热阻燃型Rusar-O[极限氧气指数(LOI)高达40~45]也相继开发成功,尤其是Rusar-S在下游需求驱动下,生产技术不断更新。近几年,俄罗斯多家研究单位联合开发出一种四元共聚型的Rusar-NT纤维,这种纤维是在Armos的三元结构中引入了更经济的含氯第四单体,其强度预计可达到7GPa,弹性模量可达180~200GPa,LOI达40以上,代表了杂环芳纶研发的最高水平。目前Armos已装备俄罗斯多种高性能武器系统,如用于俄罗斯的SS-24、SS-25及当前技术最先进的“白杨 -M”(即 SS-27)等洲际导弹Ⅰ、Ⅱ、Ⅲ级发动机壳体上,发动机质量比达到0.92以上。俄罗斯最新的布拉瓦潜射导弹也采用了Armos纤维用于发动机壳体,此外,俄罗斯还采用Armos制备了BOLIT系列芳纶头盔,并装备了部队,其最新型号的芳纶头盔防弹V50达到600~650m/s,超过了美军PASGT头盔(609m/s)和德军现役头盔(620m/s),且质量仅约1.25kg,大大降低了士兵的负重,提高机动性。俄罗斯芳纶Ⅲ除用于树脂基复合材料增强纤维之外,还用于橡胶增强、消防服、绳缆、缝纫线、降落伞等。
5.UHMWPE纤维
UHMWPE纤维是由荷兰DSM公司于1978年发明的,美国霍尼韦尔公司购买荷兰DSM公司专利技术并于1984年首先实现了该纤维的产业化,之后荷兰DSM公司与日本东洋纺合作于1986年实现产业化。DSM公司是UHMWPE纤维的发明者,在UHMWPE纤维生产技术和应用开发方面也一直保持世界领先地位。该公司拥有UHMWPE聚合工厂,生产纤维级UHMWPE树脂专门供应本公司纤维生产,除了荷兰本土之外,还在美国和日本建有多条UHMWPE纤维生产线。2009年DSM公司UHMWPE纤维总产能就已超过10kt/a,2012年纤维产能扩至13.2kt/a。除了UHMWPE纤维产能一直领先之外,他们一直研发新产品,开发了强度最高的SK99纤维(强度>40cN/dtex)、高强抗蠕变的DM20纤维、高抗切割的3G12纤维以及医疗用Purity纤维,并开发了专用于UHMWPE纤维的耐磨涂层技术。针对不同应用需求,DSM还基于UHMWPE纤维开发了高防弹防护性能的防弹板、防刺防护背心、雷达罩以及与碳纤维复合材料等。2020年3月,DSM宣布开发生物基UHMWPE纤维,以致力于减少碳排放,并宣称到2030年至少60%的UHMWPE纤维采用生物基原料制成。美国霍尼韦尔公司虽然最早实现了UHMWPE纤维的产业化,但由于其使用的萃取剂对大气层有破坏作用而面临禁用的问题,使其UHMWPE纤维的扩产受到限制,产能上不及DSM在美国投产的UHMWPE纤维生产线,纤维强度也比不上DSM的同类产品,但霍尼韦尔公司是UHMWPE防弹无纬布的发明者,开创了UHMWPE纤维在防弹领域的应用。霍尼韦尔公司的UHMWPE纤维产能一直伴随美国军方对防弹防护的需求在增长,2009年纤维产能为1kt,2012年提高到2kt,最近一次的扩能计划是在2019年,纤维产能扩大到3kt/a并维持至今。霍尼韦尔公司基于其UHMWPE纤维开发了多种规格的Spectra Shield系列防弹防护基材,用于制备软式及硬质防弹制品,包括军用和警用防弹衣、防弹板、防弹装甲等,还将UHMWPE纤维与对位芳纶复合成功解决了UHMWPE纤维基防弹头盔凹陷度大的问题,大大提高了UHMWPE纤维在军用防弹头盔领域的应用,并进一步提高了防弹装甲的防弹性能,其在UHMWPE纤维防弹应用方面的研究一直居于世界领先地位。
6.聚酰亚胺纤维
20世纪60年代,美国杜邦公司的纺织前沿实验室和苏联相关研究机构就开始了聚酰亚胺纤维的研究工作,但限于当时聚酰亚胺树脂的合成与纤维成型方面整体技术不成熟,纤维制备成本较高,聚酰亚胺纤维没有得到迅速推广和应用。至20世纪70年代,苏联报道了聚酰亚胺纤维的相关研究,生产规模小,产品仅限应用于军工装备、航空航天中的轻质电缆护套等领域。后来,法国罗纳布朗克公司开发了m-芳香族聚酰胺类型的聚酰亚胺纤维,由法国Kermel公司进行商品化开发。如今,为迎合高温气体过滤市场不断增加的温度及化学反应等特殊要求Kermel又开发了Kermel-Tech聚酰胺-酰亚胺纤维。该纤维持续工作温度达到220℃,玻璃化转变温度高达340℃,在极高工作温度下仍可保留其优异的力学性能,目前已被广泛用于能源生产、高温过滤、法国空军作战服、南极科考、极限攀登等严酷环境。20世纪80年代中期,奥地利Lenzing AG公司(目前技术为德国赢创公司独有)以甲苯二异氰酸酯(TDI)、二苯甲烷二异氰酸酯(MDI)和二苯酮四酸二酐(BTDA)为反应单体,推出了商品名为P84®的聚酰亚胺纤维,这也是目前最主要的聚酰亚胺纤维产品之一。P84®纤维可在260℃以下连续使用,瞬时温度可达280℃。该纤维具有不规则的叶片状截面,比一般圆形截面增加了80%的表面积,使其在高温过滤领域得到广泛应用。2009年赢创公司扩大了P84纤维的生产规模,于2010年7月宣布装置投产。经过近10年的发展,赢创公司相继推出了综合性能更优异的P84®HT、P84Premium等创新型纤维产品。以P84Premium产品为例,纤维细度为1.3dtex ,比表面积高达约435m²/kg,比常规2.2dtex的产品又提高了近12%。卓越的除尘效率可带来更低的压降,节约引风机电耗,延长滤料使用寿命,大大降低企业的运行成本,经济效益显著。
7. PPS纤维
全球PPS树脂主要生产企业有美国Ticona公司,产能占比9.6%;日本东丽株式会社,产能占比17.6%;日本DIC株式会社,产能占比21.7%;比利时索尔维集团,产能占比12.8%;日本吴羽化学株式会社,产能占比6.8%等,年产能均高达150kt吨以上。其中,Ticona和东丽掌握了多等级多品种的PPS纤维级切片的生产技术,是PPS纤维级切片的主要供应商。目前,也仅有Ticona和东丽具有长丝级PPS树脂的生产能力。21世纪以来,东丽首先采用市场兼并策略,收购了美国飞利浦公司和兰精公司的PPS短纤维技术,成为目前全球PPS短纤维的最大生产商。其次,东丽和东洋纺等日资企业深入研究并掌握高品质PPS短纤维生产技术,垄断了PPS短纤维的全球市场,产量占全球总产量的80%以上。为提高PPS短纤维在高温过滤领域的市场竞争力,东丽和东洋纺等国外PPS短纤维生产企业,通过整合上下游产业链,实现了细旦、异形化PPS纤维制备技术及应用开发,显著提高了滤袋的过滤精度,实现了5mg/m³的超净排放标准;另外,东丽针对除尘滤袋使用寿命短的难题,系统开展了高强PPS纤维的研究,制备了断裂强度高达5.5cN/dtex的短纤维,大幅度提升了高温滤袋的使用寿命,在高端PPS纤维应用领域具有显著的全球影响力。在其他应用领域的拓展方面,帝斯曼公司基于PPS的综合性能,制备了高可靠性和耐久性PPS质子交换膜;东丽将PPS纤维制备成微孔直径大于1.0μm的网眼织物,并与高分子电解质进行复合制备复合电解质膜,应用于电池隔膜领域。
未来PPS纤维的发展趋势主要概括为两点:
PPS纤维的应用技术研究,拓展其应用领域,目前国内外PPS纤维集中应用于燃煤电厂、垃圾焚烧、化工厂等苛刻环境的滤袋产品,市场规模小,且无法发挥PPS纤维优异的综合性能。
PPS纤维的高性能化研究,提高PPS纤维的力学强度、抗氧化性、细旦化和异形化,加强PPS纤维产品在国际市场的竞争力。
聚芳酯纤维由美国伊斯曼柯达(该业务后被杜邦和塞拉尼斯收购)、CBO公司 (Carborundum)、塞拉尼斯公司(Celanese)的科学家们首先进行开发。1976年,伊斯曼柯达的Jackson报道了热致液晶聚芳酯(商品名X7G®)可由PET和乙酰化后的对羟基苯甲酸共聚制得,但由X7G®纺成的纤维强度、模量较低,实用价值较小;随后,CBO公司与日本住友化学公司合作开发Ekonol®纤维,其强度为4.1GPa,模量为134GPa,达到高性能纤维的水平,但是都处于实验室研究阶段,并未见工业化报道。由于聚合原料、配方设计、聚合设备、纺丝设备、热处理设备等各方面的制约,真正实现工业化的则是塞拉尼斯和日本可乐丽合作开发的Vectran®纤维。1990年可乐丽西条工厂开始生产Vectran®纤维产品,2005年4月,可乐丽公司并购了塞拉尼斯先进材料公司的高性能纤维业务,成为Vectran®纤维的世界唯一生产商。2007年随着市场需求的快速增长,可乐丽公司对其在西条市的生产装置进行扩能,产能从600t增加到了1000t。2008年可乐丽在北美无纺布及非织造展览会(Techtextil North America)上推出了溶液染色的Vectran®HT新品种,有蓝、绿、橘红等色泽,其抗紫外光性、色牢度和强度均较好,同时还引入了细旦丝产品。为满足日益增长的市场需求,可乐 丽在2017—2018年间将产能由1000t拓展至2000t规模,并计划进一步扩产,预计在2022年将增至年产3000t的规模。
9. PBO纤维
基于宇宙开发和军事装备等尖端科技领域的需要,20世纪六七十年代,美国空军Wright- Patterson实验室开始了对芳杂环聚合物的基础研究,寻求高强度、高耐热的高性能聚合物的加工制备方法。同一时期,斯坦福大学研究所(SRI)的Wolf等在该领域开展科研攻关,设计了PBO聚合物。但受限于单体制备技术的限制,合成的聚合物分子量较低,PBO的优异性能未能表现出来。20世纪80年代中期,美国陶氏(Dow)化学公司获得了该专利技术,继续开展研究,探求新的单体合成路线和技术路线。1991年陶氏和日本东洋纺开始合作开发PBO纤维。1994年东洋纺出资30亿日元建成了400t/a的PBO单体和180t/a的纺丝生产线。1995年春,东洋纺获得陶氏的授权,开始PBO中试及生产研究,并且取得了小批量PBO纤维产品,1998年10月200t/a的装置正式投产,并确定PBO纤维的商品名为ZYLON。其后2000年左右PBO纤维的生产能力达到380t,2003年达到500t,2008年达到1000t,近年来达到2000t/a。目前世界上的PBO纤维的生产被东洋纺垄断,大部分的文献和专利都是东洋纺公司所有。其纤维产品主要供美国武器装备、航空航天事业、太空资源的开发以及其他尖端科技领域,纤维生产工艺严格保密,相关产品对我国实施禁售。
采用先驱体转化法进行连续SiC纤维的研发可以分为三代:
第一代的典型代表是日本碳公司(Nippon Carbon)的Nicalon NL202纤维和日本宇部兴产公司(Ube Industries)的Tyranno LoxM纤维,在空气中1000℃时仍然保持稳定,但由于纤维中含有较多的氧和游离碳,在空气中1000℃以上或者惰性气氛中1200℃以上将发生显著的分解反应并伴随结晶的迅速生长,导致纤维的强度急剧降低,严重限制了其在陶瓷基复合材料上的应用。
针对第一代连续SiC纤维的问题,日本、美国等国采用不同的技术路线,研制了低氧含量的第二代SiC纤维,典型代表是日本碳公司采用电子束辐照方法替代原有的空气不熔化处理后制得的Hi-Nicalon纤维和日本宇部兴产公司的Tyranno ZE纤维,这种低氧含量的纤维在1300℃的空气中或者1600℃的惰性气氛中能够保持稳定。
随后,在此基础上使纤维中的杂质氧、游离碳含量进一步降低,碳硅比接近化学计量比,结构上也由原来的β-SiC微晶状态、中等程度结晶变为高结晶状态,从而研发出能耐更高温度的第三代连续SiC纤维。其典型代表是日本碳公司的Hi-Nicalon S纤维、日本宇部兴产公司的Tyranno SA纤维以及美国COI Ceramics的Sylramic纤维。
虽然同为第三代SiC纤维,但彼此的制备方法和性能各不相同。Hi-Nicalon S纤维是日本碳公司在电子束辐照交联的基础上,通过在纤维烧成过程中加氢脱碳,进一步将Hi-Nicalon纤维的富余碳去除,从而实现了近化学计量比的组成。Tyranno SA纤维是宇部兴产公司将聚碳硅烷与乙酰丙酮铝反应得到聚铝碳硅烷,从而在先驱体中引入铝元素作为烧结助剂,利用碳热还原反应同时脱去多余的碳和氧,最后经过高温烧结致密化达到高结晶近化学计量比的组成与结构。Sylramic纤维是将钛元素引入聚碳硅烷得到聚钛碳硅烷,随后在纤维烧成过程中引入烧结助剂B元素,经过高温烧结致密化也实现了高结晶近化学计量比。这种纤维现在由ATK-COI陶瓷公司生产,该公司通过在氮气中进一步加热纤维制备了表面富含BN层的Sylramic-iBN纤维。与Sylramic SiC纤维相比,Sylramic-iBN SiC纤维具有更大的晶粒,更好的抗蠕变性和更高的抗氧化性。第三代SiC纤维,尤其是高结晶近化学计量比的SiC纤维,由于制备温度较高,晶粒尺寸较大,在组成、结构和耐温性能上更加接近纯SiC块体材料。连续SiC纤维由第一代、第二代到第三代的发展过程中,有以下基本特征:
纤维的元素组成逐渐接近SiC的化学计量比,杂质氧、自由碳的含量明显降低;
纤维的微观结构由无定形态、微晶态逐渐形成完善的β-SiC结晶甚至高结晶状态;
纤维的耐温性能显著提高,而且,随着组成与结构的不断优化,纤维的密度和模量都有逐渐提高的趋势。
11. 玄武岩纤维
目前全球玄武岩纤维的产量为30~40kt,国外的年产量不足10kt,主要由乌克兰和俄罗斯等国生产,其中以俄罗斯的Kamenny VEK公司较为成熟,目前已经能实现1200孔漏板稳定成纤,此外俄罗斯还有Sudaglass公司、Ivotsteklo公司等生产玄武岩纤维,工艺技术较成熟。另外乌克兰的Technobasalt公司、乌日(Toyota)公司,奥地利Asamer公司也依托苏联的工艺技术,在乌克兰建立了生产线。受性价比等因素制约,每个公司的产能均不高,根据实际情况在300~2000t不等。美洲和非洲地区也有生产玄武岩纤维的报道,如2016年俄罗斯Sudaglass公司在美国俄亥俄建立分公司,2019年美国Mafic公司在北卡罗来纳州的谢尔比市开始生产玄武岩纤维,但是考虑到当地技术成熟度等因素,产能不稳定,该地区的玄武岩纤维仍然以从亚欧买入后加工为主。乌克兰和俄罗斯地区都是依托于苏联的玄武岩纤维熔化成纤技术。该技术主要以顶部燃烧浅层熔化为主,熔化效率较低,采用铂金导流管技术,该技术获得的玻璃液品质高,但是设备维护比较复杂。由于国外复合材料研究起步早、应用广、技术先进,目前玄武岩纤维的功能化和差异化品种也一直由国外引领,我国处于跟跑阶段,如汽车保温、隔声方面、风电叶片增强等方面